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The familiar problem of the propagation of surface waves over variable depth is 
reconsidered. The surface wave is taken to be a slowly evolving nonlinear wave 
(governed by the Kortewegde Vries equation) and the depth is also assumed to be 
slowly varying; the fluid is stationary in its undisturbed state. Two cases are addressed : 
the first is where the scale of the depth variation is longer than that on which the 
wave evolves, and the second is where it is shorter (but still long). The first case 
corresponds to that discussed by a number of previous authors, and is the problem 
which has been approached through the perturbation of the inverse scattering 
transform method, a route not followed here. Our more direct methods reveal a new 
element in the solution: a perturbation of the primary wave, initiated by the depth 
change, which arises at the same order as the left-going shelf. The resulting leading- 
order mass balance is described, with more detail than hitherto (made possible by the 
use of a special depth variation). The second case is briefly presented using the same 
approach, and some important similarities are noted. 

1. Introduction 
The study of both solitary waves and variable depth (and width) has a long history; 

the seminal work of Boussinesq (1871) and Rayleigh (1876) on the theory of the 
solitary wave, and the early observations of John Scott Russell (1844), are recognized 
landmarks. Perhaps only slightly less familiar is the work of Green (1837; see also 
Lamb 1932, Art. 185) on the effects of variable depth and width; he left as a legacy his 
‘Green’s Law’ (which we shall mention in due course). Boussinesq (1872) also 
examined the slow evolution of the amplitude of a solitary wave as it enters a region 
of gradual depth change. However, we now see that the introduction of the 
Korteweg-de Vries (KdV) equation (Korteweg & de Vries 1895) was a major step 
forward in our understanding of nonlinear wave propagation (Gardner et al. 1967). 

Although only fairly simple systems give rise to the KdV (or similar) equations, 
many problems are in some sense approximately KdV-like (but therefore non- 
integrable). We shall describe one such here: the problem of variable depth. The 
extension of the KdV equation to a variable-depth regime was given by Johnson 
(1973~) and Kakutani (1971), and by viewing the depth change as either slow or fast, 
some attempt has been made to obtain asymptotic solutions of the appropriate KdV 
equation; see Grimshaw (1970, 1971), Johnson (1972, 1973a, b) and Leibovich & 
Randall (1973). However, the important advances were made (in the case of slow depth 
change) by constructing the inverse scattering transform theory for a perturbed 
(integrable) system. The perturbed KdV equation may then be treated as a special 
example of this method; see Kaup & Newell (1978), Newell (1978), Karpman & 
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Maslow (1 977), Candler & Johnson (198 1). These papers describe the important 
discovery that, as a solitary wave propagates, a shelf (of small amplitude) is created 
behind the wave; this extends back to where linear right-going disturbances would 
have reached after being initiated by the depth change. Some details as to the form and 
evolution of this shelf are given by Newell (1978), Miles (1979) and Knickerbocker & 
Newell (1980). 

One result of these calculations is to show that the solitary wave plus the shelf carry 
O(1) mass, but that this is not the mass (to leading order) which is carried by the 
incident wave propagating from the left (initially over constant depth, say). 
Knickerbocker & Newell (1985) introduce the additional component (in the complete 
water-wave problem) of a reflected wave, i.e. one which propagates to the left. The 
appearance of a reflected wave is not a new observation in this type of analysis. In a 
closely related problem, Peregrine (1 967) described the left-going (reflected) wave after 
he had isolated it from his numerical results. He also provided a description of it, based 
on a suitable set of linearized equations. This wave, although of small amplitude- 
much smaller than the right-going shelf - can be constructed to carry the appropriate 
mass which gives the overall mass balance (to leading order). This left-going wave 
component extends from behind the solitary wave to where linear left-going 
disturbances would have reached after being initiated by the depth change; its 
character is also shelf-like. There can be little doubt that this general structure gives an 
essentially correct description (in terms of leading-order mass-carrying components) of 
this problem, although we shall present both an important new refinement and some 
new details. 

We shall describe the solution in the form of a systematic asymptotic expansion. Of 
course, this approach will reproduce some of the results described by Knickerbocker 
& Newell (1985), but in a manner which, we believe, makes the various elements of the 
solution quite plain. In addition, we take the opportunity to present some analytical 
details that are new by taking advantage of a special depth variation, of the form 
(1 + C C Y ) ~ ’ ~ .  Above all, we shall see that it is possible to have - indeed it is almost always 
present - a right-going component (which carries O( 1) mass) appearing at the same 
order as the important left-going shelf, a possibility apparently overlooked by previous 
authors. 

Most of this type of work has been directed towards problems where the scale on 
which the depth varies is much longer than the scale on which the nonlinear wave 
evolves. (Of course, this is an essential requirement if the main thrust of the analysis 
is to be provided by the perturbation of the inverse scattering theory (IST).) Here, we 
shall modify our approach to the situation where the depth changes slowly, but faster 
than the evolution scale of the nonlinear wave. Results corresponding to those for very 
slow depth change are presented and we find, for example, that the general structure 
of the solution (incident wave, shelves and new perturbation, reflection) is rather 
similar, although there are some important differences in detail. 

2. Governing equations 
We model the fluid as inviscid and incompressible, and the flow is irrotational. The 

ambient state of the fluid is stationary under the action of constant gravitational 
acceleration. At the free surface we assume that the pressure is constant and we ignore 
the effects of surface tension. The flow is described in the (x’,z’)-plane where the 
bottom boundary of the fluid (z’ = b’(x’)) is a rigid impermeable surface. This 
configuration, together with the physical (dimensional) variables, is shown in figure 1. 
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FIGURE 1. The configuration and dimensional variables. 

Written in the usual notation, the governing equations - we prefer to work with the 
Euler equation - are 

Du’ 1 
Dt‘ p’ 
- = --VVp‘+g’; v . u  = 0, 

with w’ = Dh’/Dt’, P‘ = constant on z’ = h’(x’, t’); w’/u’ = db’/dx’ on z’ = b’(x’). The 
dimensional variables used here are represented by a prime, with u’ = (u’, w’) and 
g’ = (0, - g ) .  We non-dimensionalize these equations by introducing the following 
scales: h,, the undisturbed depth in x’ < 0; a, a typical wave amplitude; A, a typical 
wavelength; see figure 1. The appropriate speed scale is (ghO)lI2, which is the basis for 
defining a timescale; we now obtain the familiar non-dimensional equations 

ut+€(UU,+WU,)+p, = 0; S2{wt+E(uwz+wwz)}+p, = 0; u,+w, = 0, (1) 

with 1 - Z + E ~  = 0, w = vt+euvZ on z = 1 + s y ;  w / u  = db/dx on z = b(x). Here we 
have written p(x, z, t )  as the deviation from the undisturbed hydrostatic pressure 
distribution, and the parameters are defined by E = a/h,, S = ho/h. The free surface is 
represented by z = 1 +E~(x, t). 

In addition, the equation of mass conservation, together with the boundary 
conditions on w, imply the familiar result 

- + - = 0, 
a7 a~ 
at  ax 

R = 

Further, if undisturbed conditions exist far enough ahead of and behind the wave, then 

(2) 

which is the otherwise obvious conservation of mass associated with the surface wave. 
We shall suppose that the wave is generated at the left (where the depth is constant) 
and that it is prescribed; it therefore carries a known mass, the constant in (2). 

Our equations contain the conventional parameters encountered in water-wave 
theory; we now proceed with the choice of variables 

A r  ~(x, t)dx = 0 or Jy’ ~ ( x ,  t )  dx = constant, 
dt 

x = PX/S,  7 = @t/S 

(and w -+ ~ l / ~ w / S ) .  This transformation is used in conjunction with the variation of 
depth governed by the function b(x) = B(ax) where 01-l is the scale on which the depth 
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changes. There are then three problems that are of interest, each controlled by the size 
of a in relation to e. The choices are 

(a) S a / P  = ecr; (b) 8 a / P  = s ;  (c) Sa/el/Z = cr, e = Acr, 

for e + 0, cr + 0, A + 0. Case (a) describes the situation in which the depth change occurs 
on a scale longer than that associated with the evolution of the nonlinear wave. This 
is the problem for which most work has been done; it is, of course, the one which 
corresponds to the perturbation of the IST. Case (b) is the one in which the two scales 
are the same and then we obtain the ‘true’ variable-depth KdV equation (see Johnson 
1973~).  This is the one case for which we can make no analytical headway (at least, not 
for arbitrary depth D( Y) = 1 -B( Y), Y = ax). Finally we have case (c), which is the 
situation where the depth changes slowly but faster than the evolution of the nonlinear 
wave. It is our intention to describe some results for cases (a) and (c), but without 
invoking any further assumptions about the relationship between e and cr, or between 
cr and A .  That is, we treat e+O and a+O (and similarly cr,A) as independent 
parameters throughout our calculations. 

Finally, we introduce appropriate variables that are relevant to the various 
propagation modes in this problem. The primary wave (7 = 0(1)), which initiates the 
whole process, propagates from left to right; thus we require the right-going 
characteristic and suitable (slow) scales for the wave’s evolution (and the description 
of other right-going components). For case (a) these are 

t = ;  R(y)dy-7, X = -  S(y)dy, Y = e r ~ ,  (3) JOY : JOY 

J: 

where the functions R( Y )  and S( Y )  are to be determined (in terms of D( Y)) .  The left- 
going wave (the reflection) evolves slowly with respect to the left-going characteristic, 
the scale being given by the scale on which the depth changes; thus we introduce 

5 =  R(y)dy+T, 

where T = e m .  The solution for the surface wave will therefore be expressed in terms 
of the variables (t, 5, X ,  Y )  and the parameters (e, cr). The governing equations now 
become 

ecruc- ug + € U { R ( U g +  ecruc) + S S U ,  + ecruy) 

+ ~ W U ,  + R(p,  + ecrpc) + eSp, + ~crp  = 0 ; (4a) 

(4 b) 

(4 c) 

(4 4 
(4 4 
(4f 1 

s{ecrwc- Wg+€U[R(W~+€crwc)+ESWx+scrwy]+eww,>+p, = 0; 

R(ug + Ecruc) + € S U X  + ecruy + w, = 0; 

on z = 1 +ey, I with P’V 

w = scrrc-rg+e~{R(vg+ egrc)+~SrX +€cry,} 

and w = -ecrD’(Y)u on z = 1 -D(Y) .  

The corresponding choices for case (c) are 

where T = C T ~  and ACT = e. (It is convenient to use the same symbols here as for case 
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(a) . )  The governing equations in this case follow directly: they are equations (4) with 
e u  replaced by u, and replaced by h. We seek a solution of these equations by 
writing all the dependent variables as (double) asymptotic expansions in the form 

m m  

Q - C C E ~ ~ ~ Q ~ ~ ,  e+O, v+O 

(for case (a)) .  Here Q represents each of u, w , p  and 7;  for case (c) the same structure 
is employed but with e replaced by A .  

n=o m=o 

3. Case (a): Y = s q  
This is the case for which the general structure of the solution is now well-understood 

(mainly from the work of Knickerbocker & Newel1 1985) although we shall describe 
some new details; we present the salient features of this problem in figure 2. This figure 
depicts the wave fronts and wave components associated with the transport of O(1) 
mass. To proceed, we construct the system of equations at each order, Pvm, and 
impose the conditions that ensure uniform asymptotic expansions. We list the main 
results that are obtained at each order (and we use information from previous orders, 
as necessary). 

1 dy 
eovo : R( Y) = 1/(D( Y))'/', so that the right characteristic is ,( = - 

( D ( Y ) ) ~ / ' - ~ ~  

(6)  
3 D 

€lul : 

and then with equation ( 5 )  this yields 

2sD1/2rolx + 5 ( T o o  T01)t + -j- TOl& = - 2D1/4(D1/4 T O O ) Y ?  

D1/' T : ~  d,( = constant, (7) 

which may be interpreted as the conservation of energy for the primary wave (and, as 
such, could have been imposed a priori). We find that to remove the non-uniformities 
we require S( Y )  = D-5/2( Y ) ,  and so the primary wave takes the form 

1 vo0 = E40(i,&; (l, i) = D-'//"(&X) with 2 4 0 ~ + 3 4 0 4 0 c + ~ 4 0 c c c =  0 ;  (8) 
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FIGURE 2. Sketch of the general structure of the solution: the components which carry O(1) mass. 

for the non-local contribution to rll, i.e. away from the primary wave; this is a 
perturbation of the primary wave generated by the depth change, a component which 
appears to have been overlooked by previous authors. In passing, we observe that (lo), 
upon the elimination of Ull, yields the single equation 

(13) 
which is to be compared with (12). (The apparent novel aspects of this solution are 
easily recovered from the model equations 

2D'/4(D1/4H,1JY + ( D H l l y ) y  = 0, 

with p = 7 and w = D-7 on z = 1; w = - ~ a u D '  on z = 1 - D ,  where 

This problem ignores the contribution from the nonlinearity, evolution (in X )  and 
dispersion.) We see that h,, is forced by both the primary wave, roo, and a variation 
in the depth. This term therefore represents a contribution to the distortion of the 
primary wave as it enters a region of variable depth. The other component, H,,, 
satisfies a homogeneous equation and consequently is not forced in the same way ; we 
shall see that it exists to maintain the overall mass balance, to leading order. 

We now suppose (for simplicity) that roo is a solitary wave. Let the peak of this wave 
be at 8 = 5- CX = 0, where c is the (constant) speed of the wave in (5, 1)-space and, 
further, let 8 = 0 be at Y = F(7'). The equation for rol, (6),  then becomes 

and when we construct the integral of yol over 8, in an appropriate neighbourhood of 
8 = 0, we confirm the existence of a shelf. Further, from (9), we find that D1/4701 = 
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X 
FIGURE 3. The right-going shelf behind the solitary wave of initial amplitude A = 1. The depth 
variation is (1 - Y)4’3, terminating at D = (x w 405); e = 0.1, r = 0.01 and the solitary wave is three- 
quarters of the way up the slope (x % 304). 

constant on the shelf; it is therefore convenient to write yol = D-ll4Sol, which is usually 
regarded as Green’s law, and then the shelf amplitude is found to be 

3 m -  - - 

4c 
S = - O D  9/4D‘, D = D(Q. 01 

In the case of the solitary wave of initial amplitude A ,  for which m, = 4(A/3)’lZ and 
c = A / 2 ,  we recover the result given by Knickerbocker & Newell (1985); we see that 
Sol > 0 if 0’ < 0. 

The shelf exists where ?loo is exponentially small and so, with qol = D-1i441, we can 
then show that 

where 

8(T) = -moD3/4+constant, D = D(T) ,T = c D-’dT. 

At the front of the right-going shelf, a transition extends over a distance (0 = O(1)) to 
either side of 0 = 0, between the front and the rear of the solitary wave. Similarly, a 
rear transition occurs near 5 = 0, over a distance ( = O(1); the appropriate asymptotic 
solutions are readily obtained from our equation for qol. 

All these phenomena have been obtained, at various stages, by previous authors 
working from the perturbated-IST problem (e.g. Kaup & Newell 1978 ; Knickerbocker 
& Newell 1980) which is, of course, equivalent to our equation (6). We comment that 
this (right) shelf is part of the nonlinear structure, in the sense that its detailed form 
depends crucially on the nature of the primary wave via the perturbation of the IST 
(although our approach is more direct); see Kaup & Newell (1978). 

Some numerical results, based on our analysis of the right-going shelf (together with 
its transitions), are presented in figure 3. These calculations make use of a depth change 
which represents a power-law transition from D = 1 to D = i. The right-going shelf 
is depicted when the solitary wave is three-quarters of the way ‘up’ the slope. (These 
results are readily extended to two-soliton solutions, for example, where two shelves 
now appear.) 

JOT 

4. Mass conservation 

(3). However, in order to proceed, we must now examine 
So far, it has been unnecessary to invoke the explicit statement of mass conservation, 

00 l-: y dX = J-, (?loo + qol + ql0 + m y l l  + . . .> dX = constant (= O( l)), 
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and determine all those contributions which carry O(1) mass. First we have 

m m 

J-m900dX - DJ-m60(&f)d5^= moD, 

where D = D( Y), with Y = Y(T) on = 0 (for e+ 0), and mo is the mass associated 
with the primary wave which propagates from the left. Of course, in r < 0 we have 
D = 1 ,  but as the depth varies we see that the resulting distortion of the wave leads to a 
change in the mass that it carries; this effect must be accommodated by other wave 
components. 

The mass carried by the right-going shelf is easily seen to be 

cr J:m vol(t,  X ,  Y )  dx - m,(Dli4 - D)  

which incorporates the property that this mass must be zero in Y < 0 (where D = 1). 
The total mass so far is therefore 

for which the leading term is O(1) but not constant. These results confirm the 
observations made by Knickerbocker & Newel1 (1980,1985) and by Miles (1979), which 
have led to the important conclusion that a left-going (or at least appropriate 
components of rll) must carry the mass 

m, - m, D 1 I 4  (1  5 )  

to leading order, so that the total mass satisfies 

1: 7 dX - m, for all X ,  Y.  

As to the other contributions to 7, it is not too difficult to confirm that q,, generates 
a mass of O(e), and that all higher-order terms produce correspondingly smaller 
contributions (as + 0, cr + 0). 

We now examine the mass carried by the right-going component of yll. This wave, 
h,,((, Y,  X ) ,  satisfies equation (12) and can therefore be integrated directly to yield 

The solution has been chosen to satisfy the condition of no disturbance ahead of the 
primary wave, so h,, + 0 as 5- + 00. Furthermore, no such solution can exist in Y < 0 
and, indeed, is initiated by the depth change in Y 2 0; thus this solution also satisfies 
h,,+O as Y+O+. This wave, which is essentially a linear phenomenon, is a 
perturbation to the primary wave, generated as the solitary wave enters a region of 
variable depth; further, because it also arises at the same order as the left (reflected) 
wave, h,, can be regarded as a re-reflection. In the context of our problem, the 
important question is whether this component carries O(1) mass; it follows directly 
that 
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FIGURE 4. The new right-going shelf generated by the solitary wave of initial amplitude A = 1. The 
depth variation is (1 - Y)413, terminating at D = t (x z 405) ; B = 0.1, = 0.01 and the solitary wave 
is three-quarters of the way up the slope (x z 304). 

where the primary wave is at 0 = 0 (i.e. Y = Y(T)), as €-to. Thus the right-going 
component of rll does indeed carry O(1) mass (except in the special case D = 
(1 +cxY)’/~ for which (D”’0’)’ = 0; then the O(1) contribution in (17) is identically 
zero). 

If the primary wave, roo, is a solitary wave with its peak at Y = B( T), and we use the 
depth variation D( Y) = (1 + 01 Y)4/3, then the predominant behaviour of this right- 
going component is 

h,, = ~ C X ~ ~ ( D ~ / ~ - D O - ~ / ~ ) ,  0 < Y < Y < &; 
Y = & is where D again becomes constant. The complete solution for hll, from (16), 
also incorporates a transition structure near Y = F. The total mass carried by this 
component is 

where D = D( Y). An example of this wave component is given in figure 4. 

im,(l +D-201’2), 0 < B < y,, (18) 

The left-going component of rll, that is H,,, must provide (for Y < Y,, say) the mass 

(19) 

from (15) and (18). Now H,, cannot exist forward of the primary wave other than in 
the form of a transition. In this discussion we shall restrict the analysis to the case of 
a solitary wave centred at 0 = 0;  the shelf is therefore limited to the right by 0 = 0. To 
the left it cannot propagate further than the (linear) leftward characteristic emanating 
from Y = 0 [see figure 2). The left-going shelf is therefore restricted to lie between 
5 = 0 ( Y  = Y(T)  say) and 0 = 0 ( Y  = Y( T)). (The transitions that return the shelf 
to undisturbed conditions near Y = f and Y = Y are readily obtained from our 
equations.) The appropriate solution for H,, (and Ull) is obtained only when the mass 
condition, (19), is imposed; thus we shall require an expression for 

Mo( T) = ma -ma D1/4 -;ma( 1 + D - 2D1/’), 

This can be derived directly from (1 1) to yield 

d f  - dY - -  A sy H,  , d Y + kll - - H ,  , - + D u, , - 6 6, , = 0 ; 
d T  9 d T  d T  

here the circumflex denotes evaluation on Y =  f, and the overbar evaluation on 
Y = Y. But we have 
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and so we obtain 

to leading order; the first term on the right (associated with $no) alone corresponds to 
the result obtained by Knickerbocker & Newell (1985). We now require the solution 
of (1 l), subject to the condition (20), given the depth variation in Y > 0. 

One of our aims in this work is to extract as much analytical detail as we reasonably 
can. To this end, we proceed with the solution of this problem with the choice 
(men ti oned earlier) 

where a is a constant. There is nothing remarkable about this depth variation, either 
for a > 0 or a < 0: indeed, it could be used to model changes that are not far from 
linear (and a linear depth variation is often used to exemplify this problem). For us, 
the importance of (21) is that it leads immediately to the general solution of (1 1) as 

(22) 

D ( Y )  = (1 +aY)4/3, Y > 0, (21) 

- (6/a) G(<), Y < 0, 
- -1 D-1/4{ - (6/a)  G”(c) - G(<) + G([)}, Y > 0, 

where 

G‘(Y) = - Sam,, epaCl6 + +amo( 1 -fa$) -+am, In (1 + Sag 
l+a/6 

+ $wzo e-(1+ac/6) 1, 
This expression, and the corresponding one for G(<), are used directly in (22) to 
produce the final result for H,,. (The arbitrary constant which appears in G(c) cancels 
identically in H,, . )  A similar expression for U,, can also be obtained. 

Our results are to be compared with those of Knickerbocker & Newell (1985), where 
the structure of this left shelf was touched on only through numerial integrations (for 
a linear depth change). As mentioned by these authors, this solution is not the 
conventional Green’s law; this is usually regarded as the property: H,, K D-ll4 and 
U,, K D-’l4. This does not occur here because the evolution ofthis left-going wave is 
on precisely the same scale as that on which D changes. (In fact, this would seem to 
indicate an area of confusion in the analysis presented by Knickerbocker & Newell 
1985: they explain that these two scales are the same, but then use (in our notation) 

Y-‘ e-“ d Y + constant. 

H , , ~  - D ~ / ~ H ~ ~ ~  = 0. 

This is clearly not true unless D’( Y) can be neglected, which is possible with these scales 
only if D = constant. The correct equation for H,, is our equation (13); the solution 
does not yield H,, = constant nor DU,, = constant, on left-going characteristics. A 
direct comparison with their work is possible if we ignore the right-going component, 
h,, ; the left-going shelf, for our depth change, is then simply 

with U,, = (D-1/2-2D-3/4) H,,, where D(Y) is given by (21) in Y > 0 and D = 1 for 
Y d 0.) 

Finally, we mention the form that the solution takes if the primary wave enters 
another region of constant depth (D = Do). In this case, the condition satisfied by H, ,  
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FIGURE 5. The left-going (reflected) wave (described by (23)) generated by a solitary wave of initial 
amplitude A = 1. The depth variation is (1 - Y)4/3,  terminating at D = + (x z 405); e = 0.1, c = 0.01 
and the solitary wave is three-quarters of the way up the slope (x z 304). 

and U,, is (20), but with an alternative expression replacing that used in (19); this 
yields, in Y > &, qll = 0. The whole wave structure now evolves in the obvious 
manner: the primary wave moves away from the right-going components that are 
propagating at the linear wave speed. These components (the right shelf and the 
perturbation, hll) move together to the right, producing a shelf-like structure moving 
rightwards. Correspondingly, the left-going shelf (Hll) propagates to the left (so that 
its right end moves to the left into Y < &). These various components together carry 
the totality of the leading-order mass brought by the primary wave from the left. A 
particular left shelf, described by (23) and with appropriate transitions, is shown in 
figure 5. 

5. Case (c): Y = q, 6 = A g  
The variable depth now varies on a scale which is shorter than the scale associated 

with the wave evolution. Here an important difference from case (a) should be 
recognized: the right shelf arises at O(cr) in that case, i.e. {depth variation scale 
(ecr)}/{wave evolution scale (e)}. The corresponding result in this case yields 
O(a)/O(dcr) = O(d-l) which cannot occur in the asymptotic solution here. Hence we 
anticipate that a right-going shelf - or at least one that carries O(1) mass -will not 
appear in this problem in the same way that qol did before. 

We follow the same procedure as adopted for case (a), but here we limit ourselves 
to a statement of the results obtained. First, the characteristic variables are again 
defined by the familiar requirement that R( Y )  = (D( Y))-1/2, and then the primary wave 
takes the form 

This KdV equation has been written with the choice S = 1 for all Y, since the 
conservation of energy is automatically satisfied here (cf. (7)). 

The mass carried by the primary wave is 

m 

qoo dX = J-, D-li4fo0 dX - J:mfoo d( = m, D1/*, (24) 

since dX/d( = Dli2 and the wave is at ( = 0 (to leading order) where Y = Y. The mass 
rn, is that associated with qoo in Y < 0 where D = 1, just as for case (a). Now the mass 
given in (24) is precisely that carried by the primary wave plus the right shelf in our 
previous calculation; see (14). Here, therefore, there is no right-going shelf (of 
amplitude greater than #(cr)) which carries O(1) mass, in agreement with our earlier 
scaling argument. 

The contribution to the right-going mass from qlo is easily demonstrated to be o(d). 
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However, the presence of additional wave components is indicated in order to 
compensate for the mass imbalance, namely m, - m, D1l4, exactly as in case (a). We 
write 

and then we find that 

and (see (12)) 

so that 

701 = hOl(k x, Y )  + H,l(L x Y)?  

2 ~ 1 / 4 ( 1 ) 1 ~ 4 ~ ~ ~ ~ ) ~  + ( D H , , ~ ) ~  = 0, 

21)114(D1’4h,lJY = - (D700Y)Y 

(25) 

which is to be compared with (16). It follows that both h,, and H,, carry O(1) mass, 
where H,, is constructed to ensure that O(1) mass is conserved. 

In case (a)  we presented some detailed results for a special depth variation and we 
may proceed along the same lines here. However, this particular depth variation 
satisfies (DID-’’*)’ = 0 and so the right-going component, (26), is identically zero. This 
special case corresponds to (D’PI’)’ = 0 which, in case (a), led to the absence of that 
right-going wave (hll). In consequence, the left-going wave - the shelf - is required to 
satisfy (25) and to accommodate the mass (15). But this is precisely the problem that 
led to the solution (23) in case (a) ,  and therefore that solution is the relevant one here; 
the form of this shelf is shown in figure 5 .  The description of the wave components that 
are present when the primary wave enters a region of constant depth are then exactly 
as for case (a). 

6.  Discussion 
The work presented here has attempted to give a reasonably complete description of 

the effects of slowly varying depth on weakly nonlinear surface waves. Our approach 
has been to work directly with the appropriate governing equations that arise at each 
order. We have described the right-going shelf and its evolution, and we have shown 
how the left-going wave - the reflection - and a right-going perturbation of the primary 
wave are straightforwardly derived, particularly for the special depth variation I) = 
(1 + c x Y ) ~ / ~ .  The detail evident in our results is to be compared with that obtained by 
other authors (particularly Miles 1979, and Knickerbocker & Newel1 1980, 1985). 

In case (c) the depth variation is slow, but on a scale faster than that associated with 
the evolution of the (nonlinear) primary wave. An important observation that we have 
made for this problem is that the mass carried by the primary wave (m, DIi4) is the same 
as that carried by the primary wave plus right-going shelf in case (a). This confirms the 
conjecture, based on scaling arguments, that no right shelf (like that produced behind 
the primary wave in (a)) is possible for problem (c). In other aspects, though, the 
general structure of the solution is essentially the same in both cases: an evolving 
primary wave, a reflected wave and the new right-going component. 

We have used a special depth variation in order to explain more fully the character 
of the various wave components. The corresponding details for case (c) have also been 
developed; in both cases we have described the appearance of a new right-going 
perturbation of the primary wave, which is initiated by the depth change. This wave, 
which is generated from Y = 0, has the general appearance of a shelf and, most 
importantly, it can carry O(1) mass. (Another special choice, U( Y )  = (1 +czY)”~,  also 
leads to a fairly simple solution but the final results for the wave components differ only 
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in the finest detail and are therefore not discussed here.) Nevertheless two depth 
profiles could bear closer scrutiny, which might then lead to a deeper understanding of 
the evolution of the various components. These two are: profiles close to (1 + a Y)2/3 for 
case (a), and close to (1 + 01 Y)4/3 for case (c) ; these are the ones for which the right-going 
perturbation is absent. The mechanism underlying this wave’s appearance/dis- 
appearance (at this order) for various D( Y )  is an investigation of some interest; this 
is put aside for later study. 

We have mentioned the role of perturbed-IST theory to the problem of case (a) ,  but 
some other ideas from soliton theory are also relevant to case (c). An important 
phenomenon associated with a solitary wave (for example) which moves into a region 
of reduced depth (provided the depth change is rapid enough) is the fission of solitons; 
see Tappert & Zabusky (1971), Johnson (1973b). It is easily demonstrated that this is 
predicted from our equations. 

Many simplifying assumptions have been incorporated here in order to emphasize 
the main features of the wave phenomena that we have described. Clearly it is possible 
to extend this work by relaxing at least some of the assumptions and examining the 
consequences. The obvious improvements, such as the inclusion of an underlying shear 
flow and the extension to two-dimensional surface waves, are now under investigation. 
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